Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
C R Biol ; 347: 1-8, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441104

RESUMO

Tracing the phylogenetic relationships between species is one of the fundamental objectives of evolutionary biology. Since Charles Darwin's seminal work in the 19th century, considerable progress has been made towards establishing a tree of life that summarises the evolutionary history of species. Nevertheless, substantial uncertainties still remain. Specifically, the relationships at the origins of teleost fishes have been the subject of extensive debate over the last 50 years. This question has major implications for various research fields: there are almost 30,000 species in the teleost group, which includes invaluable model organisms for biomedical, evolutionary and ecological studies. Here, we present the work in which we solved this enigma. We demonstrated that eels are more closely related to bony-tongued fishes than to the rest of teleost fishes. We achieved this by taking advantage of new genomic data and leveraging innovative phylogenetic markers. Notably, in addition to traditional molecular phylogeny methods based on the evolution of gene sequences, we also considered the evolution of gene order along the DNA molecule. We discuss the challenges and opportunities that these new markers represent for the field of molecular phylogeny, and in particular the possibilities they offer for re-examining other controversial branches in the tree of life.


Retracer les relations de parenté entre espèces est un des objectifs fondamentaux de la biologie évolutive. Depuis les travaux fondateurs de Charles Darwin au 19 e siècle, des progrès considérables ont été effectués afin d'établir un arbre du vivant récapitulant l'histoire évolutive de l'ensemble des espèces. Néanmoins, d'importantes zones d'ombre subsistent. En particulier, les relations de parenté à l'origine de la classe des poissons téléostéens ont fait l'objet de nombreux débats, et ce depuis plus de 50 ans. La résolution de cette branche représente un enjeu majeur pour divers domaines de recherche  : on recense près de 30 000 espèces dans ce groupe, qui comprend des organismes modèles précieux à la recherche biomédicale, sur l'évolution, ou en écologie. Nous présentons ici les travaux qui nous ont permis d'élucider cette énigme. Nous avons pu démontrer que le groupe des « anguilliformes ¼ est plus proche de celui des poissons à langue osseuse qu'il ne l'est du reste des poissons téléostéens. Pour ce faire, nous avons tiré avantage de nouvelles données génomiques et de l'utilisation de marqueurs phylogénétiques innovants. En effet, en complément des méthodes de phylogénie moléculaire classiques qui se basent sur l'évolution des séquences des gènes, nous considérons également l'évolution de l'ordre des gènes le long de la molécule d'ADN. Nous discutons des défis et opportunités que ces nouveaux marqueurs représentent pour le domaine de la phylogénie moléculaire, et en particulier des possibilités qu'ils offrent pour réexaminer d'autres positions controversées de l'arbre du vivant.


Assuntos
Enguias , Peixes , Animais , Filogenia , Peixes/genética
2.
Nature ; 627(8005): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262590

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Assuntos
Evolução Molecular , Feiticeiras (Peixe) , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/embriologia , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética , Sintenia , Poliploidia , Linhagem da Célula
3.
Genome Res ; 33(9): 1513-1526, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625847

RESUMO

Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Ratos-Toupeira/genética , Hipóxia
4.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131617

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.

5.
Science ; 379(6632): 572-575, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758078

RESUMO

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.


Assuntos
Evolução Biológica , Peixes , Animais , Enguias/classificação , Enguias/genética , Peixes/classificação , Peixes/genética , Genoma , Filogenia , Peixe-Zebra/classificação , Peixe-Zebra/genética
6.
Methods Mol Biol ; 2545: 155-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720812

RESUMO

Phylogenetic gene trees recapitulate the evolutionary history of genes across species, forming an essential framework for comparative genomic studies. In particular, within the context of whole-genome duplications (WGDs), they serve as a basis to investigate patterns of duplicate gene retention and loss, timing of genome rediploidization, and, more generally, to explore the functional consequences of the duplication in descending species. Yet, despite ever more sophisticated models to describe the evolution of gene sequences, building accurate gene trees remains a challenge in ancient polyploid taxons. WGDs generate complex gene families with many duplicated copies and recurrent gene losses, which complicate this task even more. Here, we describe how to use SCORPiOs, a novel method that leverages synteny conservation to provide more accurate phylogenies in the presence of a known WGD event.


Assuntos
Medicamentos de Ervas Chinesas , Filogenia , Genes Duplicados , Genômica
7.
Genome Res ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961774

RESUMO

Teleost fishes are ancient tetraploids descended from an ancestral whole-genome duplication that may have contributed to the impressive diversification of this clade. Whole-genome duplications can occur via self-doubling (autopolyploidy) or via hybridization between different species (allopolyploidy). The mode of tetraploidization conditions evolutionary processes by which duplicated genomes return to diploid meiotic pairing, and subsequent genetic divergence of duplicated genes (cytological and genetic rediploidization). How teleosts became tetraploid remains unresolved, leaving a fundamental gap in the interpretation of their functional evolution. As a result of the whole-genome duplication, identifying orthologous and paralogous genomic regions across teleosts is challenging, hindering genome-wide investigations into their polyploid history. Here, we combine tailored gene phylogeny methodology together with a state-of-the-art ancestral karyotype reconstruction to establish the first high-resolution comparative atlas of paleopolyploid regions across 74 teleost genomes. We then leverage this atlas to investigate how rediploidization occurred in teleosts at the genome-wide level. We uncover that some duplicated regions maintained tetraploidy for more than 60 million years, with three chromosome pairs diverging genetically only after the separation of major teleost families. This evidence suggests that the teleost ancestor was an autopolyploid. Further, we find evidence for biased gene retention along several duplicated chromosomes, contradicting current paradigms that asymmetrical evolution is specific to allopolyploids. Altogether, our results offer novel insights into genome evolutionary dynamics following ancient polyploidizations in vertebrates.

8.
Nat Genet ; 53(9): 1373-1384, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462605

RESUMO

The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.


Assuntos
Evolução Biológica , Evolução Molecular , Genoma/genética , Rajidae/genética , Rajidae/fisiologia , Animais , Cromatina/genética , Peixes , Rajidae/imunologia , Sequenciamento Completo do Genoma
9.
Cells ; 9(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570966

RESUMO

PIWI-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing in animal germ cells. The piRNA pathway is increasingly recognized as critical for essential cellular functions such as germline development and reproduction. In the Anopheles gambiae ovary, as much as 11% of piRNAs map to protein-coding genes. Here, we show that ovarian mRNAs and long non-coding RNAs (lncRNAs) are processed into piRNAs that can direct other transcripts into the piRNA biogenesis pathway. Targeting piRNAs fuel transcripts either into the ping-pong cycle of piRNA amplification or into the machinery of phased piRNA biogenesis, thereby creating networks of inter-regulating transcripts. RNAs of the same network share related genomic repeats. These repeats give rise to piRNAs, which target other transcripts and lead to a cascade of concerted RNA slicing. While ping-pong networks are based on repeats of several hundred nucleotides, networks that rely on phased piRNA biogenesis operate through short ~40-nucleotides long repeats, which we named snetDNAs. Interestingly, snetDNAs are recurring in evolution from insects to mammals. Our study brings to light a new type of conserved regulatory pathway, the snetDNA-pathway, by which short sequences can include independent genes and lncRNAs in the same biological pathway.


Assuntos
Anopheles/genética , Anopheles/metabolismo , RNA Longo não Codificante/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Aedes/genética , Aedes/metabolismo , Animais , Sequência Consenso , Sequência Conservada , DNA/genética , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Feminino , Redes Reguladoras de Genes , Genes de Insetos , Genoma de Inseto , Humanos , Masculino , Camundongos , Anotação de Sequência Molecular , Ovário/metabolismo , Sequências Repetitivas de Ácido Nucleico , Testículo/metabolismo
10.
Mol Biol Evol ; 37(11): 3324-3337, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556216

RESUMO

Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


Assuntos
Técnicas Genéticas , Filogenia , Poliploidia , Algoritmos , Animais , Evolução Biológica , Duplicação Cromossômica , Peixes/genética , Família Multigênica
11.
Genome Biol Evol ; 11(3): 660-677, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689829

RESUMO

In the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin-associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin. These five types were given color names in reference to the Greek word chroma. They are defined by distinct but overlapping combinations of proteins and differ in biological and biochemical properties, including transcriptional activity, replication timing, and histone modifications. In this work, we assess the evolutionary relationships of chromatin-associated proteins and present an integrated view of the evolution and conservation of the fruit fly Drosophila melanogaster chromatin landscape. We combine homology prediction across a wide range of species with gene age inference methods to determine the origin of each chromatin-associated protein. This provides insight into the evolution of the different chromatin types. Our results indicate that for the euchromatic types, YELLOW and RED, young associated proteins are more specialized than old ones; and for genes found in either chromatin type, intron/exon structure is lineage-specific. Next, we provide evidence that a subset of GREEN-associated proteins is involved in a centromere drive in D. melanogaster. Our results on BLUE chromatin support the hypothesis that the emergence of Polycomb Group proteins is linked to eukaryotic multicellularity. In light of these results, we discuss how the regulatory complexification of chromatin links to the origins of eukaryotic multicellularity.


Assuntos
Cromatina/genética , Drosophila melanogaster/genética , Evolução Molecular , Animais , Cromatina/classificação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Código das Histonas
12.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA